First Synthesis and Structural Characterization of Dinuclear M(III) $Bis(\mu$ -oxo) Complexes of Nickel and Cobalt with Hydrotris(pyrazolyl)borate Ligand[†]

Shiro Hikichi,* Michito Yoshizawa, Yasuyuki Sasakura, Munetaka Akita, and Yoshihiko Moro-oka*

Research Laboratory of Resources Utilization Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226-8503, Japan

Received May 27, 1998

C–H bond functionalization by metal-coordinated active oxygen species, such as O_2^- , O_2^{2-} , OOH^- and O^{2-} , is one of the attractive subjects from synthetic, catalytic, and bioinorganic viewpoints.¹ A recent advance in metal–dioxygen complex chemistry reveals that a high-valent metal–oxo (O^{2-}) species is formed via O–O bond cleavage of a metal-coordinated O_2^{2-} species and works as an active intermediate for C–H bond oxygenation. Especially, bimetallic $M_2(\mu$ -O)₂ species of Cu(III/III), Fe(III/IV), and Fe(IV/IV) take part in biological and chemical activation processes of aliphatic C–H bond.^{2–4} Herein we report the first isolation and structural characterization of a dinuclear Ni(III)– bis(μ -oxo) complex, Tp^{Me₃}Ni(μ -O)₂NiTp^{Me₃}. Characterization of an analogous Co(III)–bis(μ -oxo) complex is also presented.

At first, we examined the reaction of a dinuclear Ni(II)-bis-(μ -hydroxo) complex bearing the Tp^{Pri} ligand, Tp^{Pri}Ni(μ -OH)₂-NiTp^{Pri} (1),⁵ with 1 equiv of H₂O₂ at -78 °C. This reaction resulted in the formation of a brown compound **2** which could not be characterized due to its thermal instability and gave a product oxygenated at the proximal Prⁱ group as found for the Co(II) derivative.^{6,7} To prevent the oxygenation initiated by

Chem. Rev. 1996, 96, 2237–3042.
(2) (a) Tolman, W. B. Acc. Chem. Res. 1997, 30, 227. (b) Mahapatra, S.;
Halfen, J. A.; Wilkinson, E. C.; Pan, G.; Cramer, C. J.; Que, L., Jr.; Tolman,
W. B. J. Am. Chem. Soc. 1995, 117, 8865. (c) Halfen, J. A.; Mahapatra, S.;
Wilkinson, E. C.; Kaderli, S.; Young, V. G., Jr.; Que, L., Jr.; Zuberbühler, A.
D.; Tolman, W. B. Science 1996, 271, 1397. (d) Mahapatra, S.; Halfen, J. A.;
Wilkinson, E. C.; Kaderli, S.; Young, V. G., Jr.; Que, L., Jr.; Zuberbühler, A.
D.; Tolman, W. B. Science 1996, 271, 1397. (d) Mahapatra, S.; Halfen, J. A.;
Wilkinson, E. C.; Pan, G.; Wang, X.; Young, V. G., Jr.; Cramer, C. J.; Que,
L., Jr.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 11555. (e) Mahapatra,
S.; Halfen, J. A.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 11575. (f)
Mahapatra, S.; Young, V. G., Jr.; Kaderli, S.; Zuberbühler, A. D.; Tolman,
W. B. Angew. Chem., Int. Ed. Engl. 1997, 36, 130. (g) Mahapatra, S.; Kaderli,
S.; Llobet, A.; Neuhold, Y.-M.; Palanché, T.; Halfen, J. A.; Young, V. G.,
Jr.; Kaden, T. A.; Que, L., Jr.; Zuberbühler, A. D.; Tolman, W. B. Inorg.
Chem. 1997, 36, 6343. (h) Cole, A. P.; Root, D. E.; Mukherjee, P.; Solomon,
E. I.; Stack, T. D. P. Science 1996, 273, 1848. (i) DuBois, J. L.; Mukherjee, P.; Collier, A. M.; Mayer, J. M.; Solomon, E. I.; Hedman, B.; Stack, T. D. P.;
Hodgson, K. O. J. Am. Chem. Soc. 1997, 119, 8578. (j) Mahadevan, V.; Hou,
Z.; Cole, A. P.; Root, D. E.; Lal, T. K.; Solomon, E. I.; Starck, T. D. P. J. Am.
Chem. Soc. 1997, 119, 11996. (k) Itoh, S.; Nakao, H.; Berreau, L. M.; Kondon,
T.; Komatsu, M.; Fukuzumi, S. J. Am. Chem. Soc. 1998, 120, 2890.

Chem. Soc. 1997, 179, 11996. (k) Iton, S.; Nakao, H.; Berreau, L. M.; Kondo, T.; Komatsu, M.; Fukuzumi, S. J. Am. Chem. Soc. 1998, 120, 2890.
(3) (a) Que, L., Jr.; Dong, Y. Acc. Chem. Res. 1996, 29, 190. (b) Que, L., Jr. J. Chem. Soc., Dalton Trans. 1997, 3933. (c) Dong, Y.; Que, L., Jr.; Kauffmann, K.; Münck, E. J. Am. Chem. Soc. 1995, 117, 11377. (d) Dong, Y.; Fujii, H.; Hendrich, M. P.; Leising, R. A.; Pan, G.; Randall, C. R.; Wilkinson, E. C.; Zang, Y.; Que, L., Jr.; Fox, B. G.; Kauffmann, K.; Münck, E. J. Am. Chem. Soc. 1995, 117, 2778. (e) Kim, C.; Dong, Y.; Que, L., Jr. J. Am. Chem. Soc. 1995, 117, 2778. (e) Kim, C.; Dong, Y.; Zang, Y.; Fujii, H.; Fraczkiewicz, R.; Fraczkiewicz, G.; Czernuszewicz, R. S.; Que, L., Jr. J. Am. Chem. Soc. 1998, 120, 955.
(4) (a) Wallar, B. J.; Lipscomb, J. D. Chem. Rev. 1996, 96, 2625. (b)

(4) (a) Wallar, B. J.; Lipscomb, J. D. Chem. Rev. 1996, 96, 2625. (b) Valentine, A. M.; Lippard, S. J. J. Chem. Soc., Dalton Trans. 1997, 3925. (c) Mulliez, E.; Fontecave, M. Chem. Ber./Recueil 1997, 130, 317. (d) Shu, L; Nesheim, J. C.; Kauffmann, K.; Münck, E.; Lipscomb, J. D.; Que, L., Jr. Science 1997, 275, 515. (e) Burdi, D.; Sturgeon, B. E.; Tong, W. H.; Stubbe, J.; Hoffman, B. M. J. Am. Chem. Soc. 1996, 118, 281.

(5) Kitajima, N.; Hikichi, S.; Tanaka, M.; Moro-oka, Y. J. Am. Chem. Soc. 1993, 115, 5496.

Figure 1. ORTEP drawing of $Tp^{Me_3}Ni^{III}(\mu$ -O)₂Ni^{III} Tp^{Me_3} -4CH₂Cl₂ (**4**-4CH₂-Cl₂) (drawn at the 50% probability level). All hydrogen atoms and the CH₂Cl₂ molecules are omitted for clarity. The molecular structure of the Co derivative **6** is very similar to the presented structure of **4**.

H-abstraction from the Pr^i methine part, the Pr^i substituents were replaced by methyl groups much more resistant to H-abstraction. As a result, the use of hydrotris(3,4,5-trimethyl-1-pyrazolyl)borate, $Tp^{Me_3,8}$ led to the successful isolation of the brown species (eq 1).

Reaction of a green Ni(II)-hydroxo complex, Tp^{Me3}Ni(µ-OH)₂NiTp^{Me₃} (3),⁹ and 1 equiv of H₂O₂ in CH₂Cl₂ at -50 °C gave a brown metastable complex (4) similar to the abovementioned Tp^{Pr_2} complex 2. The isolated brown complex 4 exhibited two intense characteristic absorption bands at 318 (ϵ $= 5600 \text{ M}^{-1} \text{cm}^{-1}$) and 410 (4200) nm in its UV-vis spectrum. Remarkable physicochemical characteristic of 4 was its apparent diamagnetism as indicated by ¹H NMR. This observation suggests that 4 has a magnetically coupled bimetallic core. Finally, single crystals suitable for X-ray analysis were successfully obtained from a CH_2Cl_2 solution cooled at -78 °C. As expected, 4 has a dinuclear structure that sits on a crystallographically imposed inversion center (Figure 1). Two slightly distorted square pyramidal Ni centers are bridged by two oxygen atoms, and the O---O separation (2.34 Å) clearly indicates nonbonding interaction between them. As summarized in Table 1, Ni-Ni, Ni-O, Ni-Nave distances are shorter than those of the starting dinuclear Ni(II)-bis(μ -hydroxo) complex 3. These structural features are quite similar to those of the Tolman's R₃-TACN-Cu complexes.^{2d} The high electronegativity of the

[†]Abbreviations used in this paper: Tp^R, hydrotris(3,5-substituted-1pyrazolyl)borate; Tp^{Pri}, hydrotris(3,5-diisopropyl-1-pyrazolyl)borate; Tp^{Me}₃, hydrotris(3,4,5-trimethyl-1-pyrazolyl)borate.

^{(1) (}a) Sheldon, R. A., Kochi, J. K., Eds. Metal-Catalyzed Oxidations of Organic Compounds; Academic Press: New York, 1981. (b) Gubelmann, M. H.; Williams, A. F. Struct. Bonding 1983, 55, 1. (c) Special thematic issue of Chem. Rev. for Metal-Dioxygen Complexes. Chem. Rev. 1994, 94, 567–856. (d) Special thematic issue of Chem. Rev. for Bioinorganic Enzymology. Chem. Rev. 1996, 96, 2237–3042.

^{(6) (}a) Hikichi, S.; Komatsuzaki, H.; Kitajima, N.; Akita, M.; Mukai, M.; Kitagawa, T.; Moro-oka, Y. *Inorg. Chem.* **1997**, *36*, 266. (b) Hikichi, S.; Komatsuzaki, H.; Akita, M.; Moro-oka, Y. J. Am. Chem. Soc. **1998**, *120*, 4699.

⁽⁷⁾ Similar dehydrogenative oxidation of the Tp^RCo system has also been reported by Theopold et al.: (a) Egan, J. W., Jr.; Haggerty, B. S.; Rheingold, A. L.; Sendlinger, S. C.; Theopold, K. H. J. Am. Chem. Soc. **1990**, *112*, 2445. (b) Reinaud, O. M.; Theopold, K. H. J. Am. Chem. Soc. **1994**, *116*, 6979. (c) Reinaud, O. M.; Yap, G. P. A.; Rheingold, A. L.; Theopold, K. H. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 2051.

⁽⁸⁾ Wlodarczyk, A.; Richardson, R. M.; Ward, M. D.; McCleverty, J. A.; Hursthouse, M. H. B.; Coles, S. J. *Polyhedron* **1996**, *15*, 27.

⁽⁹⁾ Synthetic procedures and analytical data (including X-ray crystallographic work) for all new compounds are provided as Supporting Information.

Table 1. Selected Interatomic Distances (Å) and Bond Angles (deg) for the $Bis(\mu$ -hydroxo) and $Bis(\mu$ -oxo) Complexes of Ni and Co with TpMe3 HB Nax (H)

1

	Ni		Со	
	3 (Ni(II)-hydroxo)	4 (Ni(III)-oxo)	5 (Co(II)-hydroxo)	6 (Co(III)-oxo)
M-O (Å)	1.964(3); 1.977(3)	1.841(7); 1.870(8)	1.992(6); 2.019(4)	1.783(4); 1.796(5)
$M - N_{eq}(Å)$	2.074(3); 2.076(3)	1.995(9); 2.001(10)	2.124(4); 2.141(6)	2.017(5); 2.018(4)
$M - N_{ax}(Å)$	2.022(3)	2.039(9)	2.049(4)	2.111(4)
M-N _{ave} (Å)	2.057	2.012	2.105	2.049
MM (Å)	3.130(2)	2.882(3)	3.141(2)	2.728(2)
00(Å)	2.394(6)	2.34(1)	2.49(1)	2.318(9)
M = O = M (deg)	105.2(1)	101.9(3)	103.1(2)	99.3(2)
O-M-O (deg)	74.8(1)	78.1(3)	76.9(2)	80.7(2)

oxygen atom donors results in inversion of the M-Nax and M-Neq distances between 3 ($N_{eq} > N_{ax}$) and 4 ($N_{eq} < N_{ax}$); i.e., the energy level of $d_{x^2-y^2}$ orbital becomes higher than that of d_{z^2} in 4. Similar inversion due to the Jahn-Teller effect has been also observed for the dinuclear Mn(II) $-bis(\mu-hydroxo)$ and Mn(III) $-bis(\mu-oxo)$ complexes with $Tp^{Pr_2^{\prime},10}$ We thus conclude that the metastable brown complex 4 is the first structurally characterized Ni(III) $bis(\mu-oxo)$ complex.^{11,12} It is worth noting that 4 and 2 are not obtained by reaction of the hydroxo complexes with other oxidizing reagents such as t-BuOOH, mCPBA, and KMnO₄.^{10,13} Therefore, the dinuclear Ni(III) $-bis(\mu-oxo)$ core should not be formed via simple oxidation of the starting $Ni^{II}(\mu-OH)_2Ni^{II}$ core but by homolysis of the O-O bond in a corresponding dinuclear Ni(II) μ -peroxo intermediate (probably μ - η^2 : η^2 -peroxo) which results from dehydrative condensation of $Ni^{II}(\mu$ -OH)₂ Ni^{II} and H_2O_2 as found for the Tp^{Pri2}-Cu(II) complex.^{14,15}

Analogous stoichiometric reaction of a red TpMe₃Co(II)-bis-(μ -hydroxo) complex 5 with H₂O₂ at -50 °C also afforded the corresponding dark brown dinuclear Co(III)-bis(μ -oxo) complex 6, whose THF solution exhibited charactristic UV-vis spectrum $(360 \ (\epsilon = 7600), 490 \ (1500), and 614 \ (800) \ nm)$, as characterized crystallographically (eq 1 and Table 1). Crystallographic cell parameters and atomic coordinates of 6 were almost identical with those of the Ni analogue 4. The O- - - O separation (2.33 Å) and the shorter Co-Co, Co-O, and Co-Nave distances of 6 compared to those of the starting hydroxo complex 5 clearly indicate that 6 is assignable as a 5-coordinated dinuclear Co(III)-bis(μ -oxo) complex. Although cubane type tetranuclear $[(Co^{III}-oxo)_4]^{4+}$ and trinuclear Co(III)– μ_3 -oxo complexes with low-spin, 6-coordinated octahedral Co(III) centers have been reported,16 the present dinuclear Co(III)-bis(μ -oxo) complex 6 contains two 5-coordinated Co(III) centers having a slightly distorted square pyramidal geometry. Due to this unusual coordination environment of the

(b) Kitajima, N.; Moro-oka, Y. Chem. Rev. 1994, 94, 737.

(15) The bridging oxo ligands in 4 and 6 were readily exchanged with the oxygen atoms of exogenous H2O molecules. Therefore, the attempt to prepare ¹⁸O-incorporated bis(μ -oxo) complexes by reaction of the hydroxo complexes (3 and 5) with a low-concentration aqueous solution of $(H_2^{16}O) H_2^{18}O_2$ failed, although treatment of 4 and 6 with $H_2^{18}O$ resulted in the formation of the desired ¹⁸O-incorporated bis(μ -oxo) complexes.

(16) (a) Dimitrou, K.; Folting, K.; Streib, W. E.; Christou, G. J. Am. Chem. Soc. 1993, 115, 6432. (b) Dimitrou, K.; Folting, K.; Streib, W. E.; Christou, G. J. Chem. Soc., Chem. Commun. 1994, 1385. (c) Dimitrou, K.; Sun, J.-S.; Folting, K.; Christou, G. Inorg. Chem. 1995, 34, 4160.

metal centers, 6 is not diamagnetic as found for the usual Co(III) complexes; in a ¹H NMR spectrum at room temperature, paramagnetically shifted Me signals of the Tp^{Me₃} ligand were located at δ -35.2, 2.0, and 26.0. Co(III) ions (d⁶) strongly favor an octahedral geometry with low-spin (S = 0) state, and only a limited number of structurally characterized 5-coordinated paramagnetic Co(III) species is known.¹⁷ Detailed analysis of the paramagnetic property of 6 will be performed.

In general, peroxides such as H_2O_2 and *t*-BuOOH are used to oxidize Co(II) precursors to give Co(III) compounds; in fact, the previously reported Co(III)-oxo clusters are prepared by oxidation of Co(II) precursors by H_2O_2 , but no Co(II)-peroxo species are detected.¹⁶ In contrast, a Co(II)-alkylperoxo complex was formed via dehydrative condensation of the Co(II)-hydroxo complexes 5 with 2 equiv of t-BuOOH as found for the analogous Tp^{Pri₂} complex,^{6b} and treatment of **5** with KMnO₄ did not afford 6. Therefore, in a manner similar to the Ni system (vide supra), O–O cleavage of a dinuclear Co(II)– μ -peroxo intermediate rather than an outerspheric oxidation of the $Co^{II}(\mu-OH)_2Co^{II}$ core may be a feasible formation mechanism of the dinuclear Co(III)-bis-(μ -oxo) complex **6**.^{15,18}

Although the dinuclear Ni(III) – and Co(III) – bis(μ -oxo) complexes with Tp^{Me₃} were stable at low temperature, the Ni complex 4 decomposed within 1 h at room temperature, and the Co complex 6 were decomposed very slowly. Preliminary spectral analysis of the decomposition products indicated that the methyl groups in the Tp^{Me3} ligands proximal to the metal centers were oxygenated as found for the Tp^{Pri}₂Co system.⁶

In summary, we succeeded in the first synthesis and structural characterization of thermally unstable high-valent dinuclear metal bis(u-oxo) complexes of Ni(III) and Co(III), which exhibit unusual physicochemical properties and are closely related to the recently developed high-valent M(µ-O)₂M complexes of Cu and Fe.²⁻⁴ Detailed investigations of their physicochemical properties and reactivities are now under way, and the results will be report in due course.

Acknowledgment. This research was supported in part by a Grantin-Aid for Specially Promoted Scientific Research (No. 08102006) from the Ministry of Education, Science, Sports and Culture of the Japanese government.

Supporting Information Available: Summary of X-ray analysis, atomic coordinates, thermal parameters, and bond lengths and angles for 3, 4, 5, and 6 (28 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA981837L

⁽¹⁰⁾ Kitajima, N.; Singh, U. P.; Amagai, H.; Osawa, M.; Moro-oka, Y. J. Am. Chem. Soc. 1991, 113, 7757.

⁽¹¹⁾ X-ray structures of heterometallic-multinuclear oxo complexes involving Ni(II) centers: (a) Bemm, U.; Norrestam, R.; Nygren, M.; Westin, G. Inorg. Chem. 1993, 32, 1597. (b) Ohta, A.; Sasaki, Y.; Ito, T. Inorg. Chem.

¹⁹⁹⁴, 33, 1245. (12) The structure of $(BaNiO_3)_{\infty}$ has been reported, but the formal valence of the Ni centers are still unclear: Gottschall, R.; Schöllhorn, R.; Muhler, M.; Jansen, N.; Walcher, D.; Gütlich, P. *Inorg. Chem.* **1998**, *37*, 1513.

⁽¹³⁾ Reaction of $[Tp^{R}Ni(\mu - OH)]_2$ and EuOOH yielded the corresponding Ni(II)-OOBu' complexes: Hikichi, S.; Komatsuzaki, H.; Yoshizawa, M.; Akita, M.; Moro-oka, Y.; manuscript in preparation. (14) (a) Kitajima, N.; Tolman, W. B. *Prog. Inorg. Chem.* **1995**, *43*, 419.

^{(17) (}a) Hitchcock, P. B.; McLaughlin, G. M. J. Chem. Soc., Dalton Trans. 1976, 1927. (b) Bailey, N. A.; McKenzie, E. D.; Worthington, J. M. J. Chem. Soc., Dalton Trans. 1977, 763.

⁽¹⁸⁾ Theoretical analysis of [TpCo(µ-O)]₂ formed via O-O cleavage of the Co(II)–µ-peroxo species has been reported recently: Theopold, K. H.; Reinaud, O. M.; Doren, D.; Konecny, R. In *3rd World Congress on Oxidation Catalysis*; Grasselli, R. K., Oyama, S. T., Gaffney, A. M., Lyons, J. E., Eds.; Elsevier: Amsterdam, 1997; p 1081.